Exploring lignocellulosic biomass for bio-methane potential by anaerobic digestion and its economic feasibility

Author:

Ali Shehbaz12ORCID,Shah Tawaf A12,Afzal Asifa12,Tabassum Romana12

Affiliation:

1. National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan

2. Pakistan Institute of Engineering and Applied Science, Islamabad, Pakistan

Abstract

Anaerobic digestion is a process to convert organic biomass into bio-methane. Plenty of produced waste in Pakistan is enough to compensate energy thirst of country and have potential to replace costly fossil fuels. The lignocellulosic biomass such as wheat straw, almond shell, sugarcane bagasse, maize straw and corn cob were subjected to bio-methane potential assay after proximate, ultimate and chemical analysis. These chemical fractions provide better understanding about theoretically predicating bio-methane potentials such as neutral detergent fibre, acid detergent fibre, acid detergent lignin, cellulose, hemicellulose, carbohydrates, proteins and elemental analysis. Experimental bio-methane potentials were found, 267.74 (wheat straw), 255.32 (almond shell), 222.23 (corn cob), 247.60 (sugar cane bagasse) and 293.12 ml/g (maize straw) volatile solids and was much less than predicted methane potential. The energy content on dry basis and methane potential has been assessed to find economic feasibility of biomass. The biodegradability and methane potential inversely related to the lignin content of biomass. Bioenergy production from biomass is economically favourable. The volatile fatty acids were produced in the percentage of 53–58% acetic acid, 30–35% butyric acids and 6–13% propionic acid and showed same metabolic pathway and types of bacteria involved in digestion.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3