Effect of port injection of ethanol on engine performance, exhaust emissions and environmental factors in a dual-fuel diesel engine

Author:

Gürbüz Habib1ORCID,Demirtürk Selim2ORCID,Akçay İsmail Hakkı1,Akçay Hüsameddin1

Affiliation:

1. Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey

2. Technical Sciences Vocational School, Usak University, Usak, Turkey

Abstract

This paper investigates the effect of ethanol addition and hot exhaust gas recirculation (EGR) on engine performance, exhaust emissions, and air-pollution damage-cost in a dual-fuel diesel engine. The ethanol is injected at low pressure into the intake manifold using a port-fuel injector while diesel fuel is injected directly into the cylinder. Only the duration of the ethanol injection is changed in the dual-fuel injection system while the diesel injection parameters are not changed. Ethanol fuel is added by port injection in such amounts as to provide additional heat energy in the range of 0–40% to the heat energy of the diesel fuel taken to the engine for any engine operating conditions. Moreover, 5%, 10%, and 15% rates exhaust gas recirculation (hot EGR) for each engine operating conditions are applied. The engine is operated at 1400, 1600, 1800 and 2000 rpm engine speeds at full load (≈40 Nm). In this paper, the highest improvement in engine performance and environmental factors is obtained with ethanol addition of 40% without the hot EGR at 1400 rpm. Under these conditions, the brake engine power ( BEP) and brake engine torque ( BET) increase of 6.9% and 8.1% while NOx emission and air-pollution damage-cost decreased of 32% and 23.9%, respectively. However, CO, HC, and smoke ( FSN number) emissions increased significantly. On the other hand, the brake thermal efficiency ( BTE) and brake specific energy consumption ( BSEC) are negatively affected by the ethanol addition and hot EGR.

Funder

Süleyman Demirel University Scientific Research Project Coordination Unit

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3