Optimum sizing and simulation of hybrid renewable energy system for remote area

Author:

Masih Animesh1ORCID,Verma HK1

Affiliation:

1. SGSITS, Indore, India

Abstract

In current scenario, people tend to move towards outskirts and like to settle in places that are close to nature. But, due to urban lifestyle and to fulfill the basic needs, demand of electricity remains the same as in urban areas. This demand of electricity can be only fulfilled by using hybrid renewable energy resources, which is easily available in outskirts. Renewable energy resources are unreliable and more expensive. Researchers are working to make, it more reliable and economic in terms of utilization. This article proposes a metaheuristic grasshopper optimization algorithm (GOA) for the optimal sizing of hybrid PV/wind/battery energy system located in remote areas. The proposed algorithm finds the optimal sizing and configuration of remote village load demand that includes house electricity and agriculture. The optimization problem is solved by minimization of total system cost at a desirable level of loss of power supply’s reliability index (LPSRI). The results of GOA are compared with particle swarm optimization (PSO), genetic algorithm (GA) and hybrid optimization of multiple energy resources (HOMER) software. In addition, results are also validated by modeling and simulation of the hybrid energy system and its configurations at different weather conditions-based results. Hybrid PV/wind/battery is found as an optimal system at remote areas and sizing are[Formula: see text] with cost of energy (COE) (0.3473$/kWh) and loss of power supplies reliability index (LPSRI) (0%). It is clear from the results that GOA based methods are more efficient for selection of optimal energy system configuration as compared to others algorithms.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3