PERFORMANCE EVALUATION OF ADVANCED ENERGY STORAGE SYSTEMS: A REVIEW

Author:

Smdani Gulam1,Islam Muhammad Remanul2ORCID,Ahmad Yahaya Ahmad Naim3,Bin Safie Sairul Izwan2

Affiliation:

1. Malaysian Institute of Chemical and Bioengineering Technology, Malacca, Malaysia

2. Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Johor, Malaysia

3. Institute of Postgraduate Studies, Kuala Lumpur, Malaysia

Abstract

Energy systems are progressive and revolutionary for their alternative resources, technical developments, demands, effectiveness and environmental effects. The recently published research's goal is to assess and evaluate the systems that are already in operation and those that will be in the future. Energy can be stored as electrical energy such as supercapacitors (SCs) and superconducting magnetic energy storage (SMES) etc., mechanical energy such as pumped hydro energy storage (PHES), compressed air energy storage (CAES) and flywheel energy storage (FES) etc., chemical energy, electrochemical energy such as batteries and fuel cells etc., and thermal energy. Performance of these energy storage systems (ESSs) have been evaluated in terms of energy density, power density, power ratings, capacitance, discharge-time, energy-efficiency, life-time and cycling-times, and costs. Supercapacitors provide highest power density (>10,0000 W/l), while hydrogen fuel cells provide highest energy density (500-3000Wh/l) among other EESs. Batteries also provide high energy density(200-500Wh/l). The energy efficiency is found highest in SMES system (95-98%), and lowest in TES system (30-50%). Moreover, batteries and supercapacitors have the cycle efficiency above 90%. PHES and CAES seem to be the most cost-effective energy storage systems reviewed in this analysis in terms of $/kWh. In addition, power-based capital cost of supercapacitors is lower (100-300$/kW) compared to energy-based capital cost of supercapacitors (300-2000$/kWh). In comparison with power-based capital costs, the energy-based capital cost of batteries is lower, which is 150-400$/kWh for Lead-acid battery, and <300$/kWh for Li-ion battery. This essay may help researchers in choosing the advanced energy storage technologies for relevant purposes.

Funder

STRG

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3