Is there a grid-connected effect of grid infrastructure on renewable energy generation? Evidence from China's upgrading transmission lines

Author:

Wang Yongpei12ORCID,Xu Chao1,Yuan Pinghong3

Affiliation:

1. School of Economics, Nanjing Audit University

2. School of Urban and Regional Science, Shanghai University of Finance and Economics

3. School of International Trade and Economics, Anhui University of Finance and Economics

Abstract

China has built the world's largest power infrastructure. Those upgrading power grid facilities not only contribute to providing enough end-used energy for the world's factories, but also offering a basic guarantee for the clean strategy of Building a Beautiful China proposed by the Chinese government. The national grid system supported by extra-high voltage and ultra-high voltage grids as the backbone makes it possible for a non-dispatchable renewable energy source to be connected to the national grid and transmitted to terminal consumers in load centers. The aim of this paper is to test whether China's advanced power grids have played a positive role in promoting power generation of intermittent renewable energy source. A novel nonlinear estimation named panel smoothing transition regression is introduced to capture heterogeneous effects of grid-connecting renewable energy source across regions. The empirical results show that whereas power grid infrastructure generally enhances power generation of renewable energy source and consumption in energy bases and load centers, the effects change across different voltage levels of power grids. The extra-high voltage power grids show strong support for grid-connecting renewable energy source, while the effect of ultra-high voltage power grids is unexpectedly insignificant. The extra-high voltage power grids have not yet become the backbone of the national grid, which is the main reason for the inadequate grid-connected renewable energy source to the ultra-high voltage power grids, indicating the importance of upgrading the power grid infrastructure.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3