Maintaining global biodiversity by developing a sustainable Anthropocene food production system

Author:

Thomas Chris D1ORCID

Affiliation:

1. University of York, UK

Abstract

Humans have appropriated modern (food and biomass) and ancient (fossil fuels) biological productivity in unprecedented quantities over the last century, generating the biodiversity and climate ‘crises’ respectively. While the energy sector is gradually addressing the underlying cause of climate change, transitioning from biological to physical sources of energy, the biodiversity and conservation community seems more focussed on treating the symptoms of human exploitation of biological systems. Here, I argue that the biodiversity crisis can only be addressed by an equivalent technological transition to our food systems. Developing three scenarios for future technological and agricultural developments, I illustrate how using renewable physical sources of energy to culture animal products, microbes and carbohydrates will enable humanity to circumvent the inefficiencies of photosynthesis and the conversion of photosynthetic materials into animal products, thus releasing over 80% of agricultural and grazing land ‘back to nature’. However, new political will, governance structures and economic incentives are required to make it a reality.

Funder

Leverhulme Trust

Publisher

SAGE Publications

Subject

Geology,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3