Quantifying available energy and anthropogenic energy use in the Mississippi River Basin

Author:

Turnbull Thomas1ORCID,Renner Maik2,Panwar Annu2,Katsikis Nikos3,Kleidon Axel2,Schindler Alexander1

Affiliation:

1. Max Planck Institute for the History of Science, Germany

2. Max Planck Institute for Biogeochemistry, Germany

3. TU Delft, Netherlands

Abstract

The Mississippi River Basin is a vast near-planar surface, an area upon which sunlight falls and wind flows. Its gently banked geomorphology channels precipitation, sediment, biota, and human activity into a dynamic locus of regional Earth system interactions. This paper describes the major features of this region’s energy exchanges from a thermodynamic Earth systems perspective. This analysis is combined with descriptions of the historical and socio-political contexts that have helped shape energy use. In doing so, the paper contrasts the region’s available energy exchanges and flows with their anthropogenic diversion, providing an account of human impact at a regional scale. It also offers theoretical estimates of the potential availabilities of renewable energy. This is contrasted with a description of the geological formation of stocks of fossil energy in the region. On these bases, a number of maps are presented and an assessment of the region’s energy flows is offered. These exercises point to significant affordances for achieving regional de-fossilisation at the river basin scale.

Publisher

SAGE Publications

Subject

Geology,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3