A sociometabolic reading of the Anthropocene: Modes of subsistence, population size and human impact on Earth

Author:

Fischer-Kowalski Marina1,Krausmann Fridolin1,Pallua Irene1

Affiliation:

1. Institute of Social Ecology, Alpen-Adria-Universität, Austria

Abstract

We search for a valid and quantifiable description of how and when humans acquired the ability to dominate major features of the Earth System. While common approaches seek to quantify the human impact upon the carbon cycle by identifying the area of land cleared by humans, our point of departure is different human modes of subsistence, and we base our analysis on their social metabolism, in particular their energy metabolism. As a starting point, we use Ehrlich’s classical IPAT formula, and give it a specific interpretation: human impact on Earth = population size × affluence (interpreted as energy available per person) × technology – for each mode of subsistence. The overall impact (or rather human pressure) then equals the composite sum of these. We qualitatively describe the functional characteristics of hunter gatherers, agrarian and industrial modes of subsistence such as population dynamics, energy regime and the technologies by which they interact with their environment. In a ‘toy’ model, we translate these considerations into global numbers for the past millennia: we estimate the respective population sizes and affluence (energy), and finally also technology concerning its impact on the carbon cycle. We see a major historical dividing line around ad 1500: until then, human population growth and metabolic rates carry about equal weight in increasing human pressure on the environment approximately fivefold from the year ad 1 onwards. From then on, the overall pressure of humanity upon the Earth increases by one order of magnitude; energy intensity contributes to this rise by roughly tripling the impact of population growth. Technology, because it is based upon a shift from biomass to fossil fuels (and other ‘modern’ energy carriers), does not moderate this impact, but enhances it by a factor of 1.5.

Publisher

SAGE Publications

Subject

Geology,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3