Exosomal miRNA-200b-3p regulated autogenous arteriovenous fistula thrombosis in maintenance hemodialysis patients

Author:

Luo Minhong1,Mo Caiju1,Tang Dang1,Liu Sheng zi1,Yang Tiecheng1ORCID

Affiliation:

1. Department of Nephrology, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China

Abstract

Background: Autogenous arteriovenous fistula (AVF) is the best vascular hemodialysis access for terminal chronic renal failure patients but is prone to thrombosis. Pathogenic mechanisms of AVF thrombus are thus largely explored. As exosomes carry genetic content from cell of origin. We hypothesized that miRNAs in serum exosomes are promising regulators of AVF thrombosis. Methods: Serum exosomes were isolated from maintenance hemodialysis (MHD) patient, miRNAs profile of the exosomes was obtained by high throughput sequencing, six miRNAs (miR-144-5p, miR-18a-5p, miR-200a-3p, miR-200b-3p, miR-141-3p, and miR-429) were determined as candidates examined by RT-PCR, cells transfected with miR-200b-3p mimics demonstrated significantly increased mRNA levels of VEGF and Ang-II, the relationship between miR-200b-3p and VEGF or Ang-II was performed by adual luciferase reporter assay. Results: There are 43 miRNA down-regulation and 15 miRNA up-regulation between MHD group and MHD+Thrombus group, the expression levels of miR-200b-3p and miR-429 in MHD with thrombus were significantly increased ( p < 0.001, p < 0.05). Inhibited miR-200b-3p expression level can increase VEGF mRNA and protein expression levels and decrease Ang-II mRNA and protein expression levels. Furthermore, we also identified that miR-200b-3p targets VEGF and Ang-II. Conclusion: Our study indicates that serum exosome-derived miR-200b-3p regulate VEGF and Ang-II to increase intimal hyperplasia to induce AVF thrombosis. Besides miR-200b-3p, miR-200 family may also play a regulatory role in AVF thrombosis.

Funder

Shenzhen science and technology research and development foundation

Publisher

SAGE Publications

Subject

Nephrology,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3