Effect of arteriovenous graft flow rate on vascular access hemodynamics in a novel modular anastomotic valve device

Author:

McNally Andrew1,Akingba A George2,Sucosky Philippe3

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA

2. Department of Vascular and Endovascular Surgery, Detroit Medical Center, Detroit, MI, USA

3. Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, USA

Abstract

Purpose: Perturbed vascular access hemodynamics is considered a potential driver of intimal hyperplasia, the leading cause of vascular access failure. To improve vascular access patency, a modular anastomotic valve device has been designed to normalize venous flow between hemodialysis periods while providing normal vascular access during hemodialysis. The objective of this study was to quantify the effects of arteriovenous graft flow rate on modular anastomotic valve device vascular access hemodynamics under realistic hemodialysis conditions. Methods: Modular anastomotic valve device inlet and outlet flow conditions and velocity profiles were measured by ultrasound Doppler in a vascular access flow loop replicating arteriovenous graft flow rates of 800, 1000, and 1500 mL/min. Fluid–structure interaction simulations were performed to identify low wall shear stress regions on the vein wall and to characterize them in terms of temporal shear magnitude, oscillatory shear index, and relative residence time. The model was validated with respect to the Doppler measurements. Results: The low wall shear stress region generated downstream of the anastomosis under low and moderate arteriovenous graft flow rates was eliminated under the highest arteriovenous graft flow rate. Increase in arteriovenous graft flow rate from 800 to 1500 mL/min resulted in a substantial increase in wall shear stress magnitude (27-fold increase in temporal shear magnitude), the elimination of wall shear stress bidirectionality (0.20-point reduction in oscillatory shear index), and a reduction in flow stagnation (98% decrease in relative residence time). While the results suggest the ability of high arteriovenous graft flow rates to protect the venous wall from intimal hyperplasia–prone hemodynamics, they indicate their adverse impact on the degree of venous hemodynamic abnormality.

Publisher

SAGE Publications

Subject

Nephrology,Surgery

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3