Effects of the tip structure of temporary indwelling catheters on blood recirculation at various blood flow rates and diameters of the mock blood vessel

Author:

Sato Yukihiro1ORCID,Yanagisawa Katsuya1,Hachitani Yusuke1,Ueki Shunichi2,Kurihara Yoshitaka2,Kobayashi Kozue2,Kokubo Kenichi2

Affiliation:

1. Department of Clinical Engineer, Itabashi Chuo Medical Center, Itabashi-ku, Tokyo, Japan

2. Kitasato University School of Allied Health Sciences, Kanagawa, Japan

Abstract

Aims: The aim of the present study was to determine the effects of the tip structure of the catheters used for hemodialysis on blood recirculation at varying blood flow rates and diameters of the mock blood vessel in a well-defined in vitro experimental system, focusing on reverse connection mode. Methods: A mock circulatory circuit was created with silicon tubing (15 or 20 mm), a circulatory pump, connected through the catheter to dialysis circuit and dialyzer attached to dialysis machine. The tip of the inserted catheter was fixed to the center of the silicone tube, and 3 L of pig blood was poured into the blood side of the dialyzer and the recirculation rates were measured at blood flow rates of 100, 150, and 200 mL/min. Five types of commercially available catheters were used: (A) Argyle™, (B) Gentle Cath™ (Hardness gradient type), (C) Gentle Cath™, (D) Niagara™, and (E) Power-Trialysis®. Results: In the case of reverse connection mode, (1) the recirculation rates were lower in the catheter with a relatively large side hole (catheter C, 17%), catheters with a greater distance between the end hole and side hole (catheters C and D, 25%), and catheter with a symmetrical tip structure (catheter E, 10%) as compared with those in catheters A and B (40% and 25%); (2) increase of the blood flow rate in the dialysis machine was associated with a reduced recirculation rate; and (3) a wider inner diameter of the mock blood vessel and faster flow rate in the vessel were associated with a reduced recirculation rate. Conclusion: The lowest recirculation was observed with the catheter with symmetrical holes, which produces a helical blood flow line that does not intersect with the blood streamline flowing out to the blood supply hole.

Publisher

SAGE Publications

Subject

Nephrology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3