Effect of Ethanol/Trisodium Citrate Lock on Microorganisms Causing Hemodialysis Catheter-Related Infections

Author:

Takla T.A.1,Zelenitsky S.A.12,Vercaigne L.M.13

Affiliation:

1. Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba - Canada

2. St. Boniface General Hospital, Winnipeg, Manitoba - Canada

3. Manitoba Renal Program, Winnipeg, Manitoba - Canada

Abstract

Purpose This in vitro study tested the effectiveness of a novel 30% ethanol/4% trisodium citrate (TSC) lock solution against the most common pathogens causing hemodialysis catheter-related infections. Methods Clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) (n=4), methicillin-sensitive S. aureus (MSSA) (n=8), methicillin-resistant Staphylococcus epidermidis (MRSE) (n=8), Pseudomonas aeruginosa (n=4) and Escherichia coli (n=4) were tested in duplicate. Bacterial suspensions of each isolate were made in a control solution of normal saline and Mueller-Hinton broth (MHB), and in a lock solution of ethanol 30%, TSC 4% and MHB. Suspensions were incubated at 37 °C for 48 h. Colony counts were determined from samples collected at t=0 h (before exposure to the ethanol/TSC lock), t=1 h (one hour after exposure to the ethanol/TSC lock), t=24 h and t=48 h. To confirm the absence of viable organisms in the lock solution, the remaining volume at 48 h was filtered through a 0.45 μm filter. The filter was rinsed with 15 mL sterile water and plated on tryptic soy agar (TSA). Results All controls demonstrated significant growth over 48 h. In the lock solutions, initial inocula were reduced to 0 viable colonies by t=1 h (6-log kill), and there was no growth at t=24 and 48 h. Filtering of lock solutions also showed no growth. These results were consistent among duplicates of all isolates. Conclusions The 30% ethanol/4% TSC lock solution consistently eradicated MRSA, MSSA, MRSE, P. aeruginosa and E. coli within 1 h of exposure. Experiments are currently underway to test this novel lock solution on preventing biofilm production by these pathogens.

Publisher

SAGE Publications

Subject

Nephrology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3