Development of a novel biofeedback system for the sprint start

Author:

Cortes Gutierrez Jorge12ORCID,Walton Sean Peter3,Bezodis Neil Edward1ORCID

Affiliation:

1. Applied Sports, Technology, Exercise and Medicine Research Centre, Swansea University, Bay Campus, Swansea, UK

2. Sport and Exercise Science Research Centre, London South Bank University, London, UK

3. Department of Computer Science, The Computational Foundry, Swansea University, Bay Campus, Swansea, UK

Abstract

This study developed and evaluated a novel concurrent biofeedback system for the sprint start. Previous studies have investigated sprint start biofeedback applications, but these have either not considered important kinematics, coaching implications or key motor learning principles. The biofeedback system was developed to convey rear knee angle information, obtained from 3D motion capture to novice participants as changes in the colour of an LED start line when they were in the “set” position. Based on initial user feedback, the system indicated whether the participants’ rear knee angles were within ± 2° of 130° (green) or not (red). A two-group experimental study was then employed to explore the acute responses of novices to the use of the biofeedback system during the sprint start. When exposed to biofeedback, the experimental group (EXP, n = 10) exhibited less deviation (4.0 ± 2.4°) from the target rear knee angle than they did in either a pre-test (11.9 ± 6.9°) or post-test (10.4 ± 4.4°) condition without biofeedback. The control group (CON, n = 10) with no biofeedback exhibited greater deviation from the target rear knee angle than the EXP group in all three condition blocks (pre-test = 21.8 ± 15.1°, no intervention = 15.6 ± 7.3°, post-test = 14.3 ± 6.5°) but the group × condition interaction effect was not significant (P = 0.210). The novel biofeedback system can be used to manipulate selected “set” position kinematics and has the potential to be incorporated with different input systems (e.g. inertial measurement units (IMUs)) or in longitudinal designs.

Publisher

SAGE Publications

Subject

Social Sciences (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3