Inertial measurement unit based knee flexion strength-power test for sprinters

Author:

Nagahara Ryu12ORCID,Murata Munenori12ORCID

Affiliation:

1. Reviewer: Natalia Romero-Franco (University of the Balearic Islands, Spain)

2. National Institute of Fitness and Sports in Kanoya, Kanoya, Japan

Abstract

This study aimed to examine whether sprinting performance would be associated with knee flexion strength-power capabilities measured using a recently developed inertial measurement unit (IMU) based system. Sixteen male sprinters performed 60-m sprints and the IMU based knee flexion strength-power test which consisted of five serial knee flexion-extension motions in three conditions (unweighted, 0.75 or 1.5 kg ankle weighted) for both legs. Spatiotemporal variables during sprinting for a 50-m distance were obtained using a long force platform system. The knee flexion joint kinetic variables during the knee flexion strength-power test were collected using one IMU. Running acceleration during the entire sprinting was positively correlated with the knee flexion positive work measured using the unweighted right knee flexion strength-power test (r = .521–.721). Moreover, step frequencies at the 13th–16th, 17th–20th and 21st–22nd step sections and during the entire sprint were positively correlated with the knee flexion positive work measured using the unweighted right knee flexion strength-power test (r = .506–.566), while step length did not show any correlations with the knee flexion strength-power test variables. The results demonstrate that the greater right knee flexion strength-power capabilities measured using IMU based method in the unweighted condition are advantageous for better sprinting performance through higher step frequency. The IMU-based knee flexion strength-power test in the right leg unweighted condition will likely be useful for physical fitness evaluation of sprinters on the field setting.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Social Sciences (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3