Machine learning in men’s professional football: Current applications and future directions for improving attacking play

Author:

Herold Mat12ORCID,Goes Floris3,Nopp Stephan2,Bauer Pascal2,Thompson Chris1,Meyer Tim1

Affiliation:

1. Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany

2. Deutscher Fußball-Bund, Frankfurt am Main, Germany

3. Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Abstract

It is common practice amongst coaches and analysts to search for key performance indicators related to attacking play in football. Match analysis in professional football has predominately utilised notational analysis, a statistical summary of events based on video footage, to study the sport and prepare teams for competition. Recent increases in technology have facilitated the dynamic analysis of more complex process variables, giving practitioners the potential to quickly evaluate a match with consideration to contextual parameters. One field of research, known as machine learning, is a form of artificial intelligence that uses algorithms to detect meaningful patterns based on positional data. Machine learning is a relatively new concept in football, and little is known about its usefulness in identifying performance metrics that determine match outcome. Few studies and no reviews have focused on the use of machine learning to improve tactical knowledge and performance, instead focusing on the models used, or as a prediction method. Accordingly, this article provides a critical appraisal of the application of machine learning in football related to attacking play, discussing current challenges and future directions that may provide deeper insight to practitioners.

Publisher

SAGE Publications

Subject

Social Sciences (miscellaneous)

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3