Key considerations in the week-to-week forecasting of individual match actions in football

Author:

He Qixiang1ORCID,Komar John1ORCID,Kee Ying Hwa1ORCID

Affiliation:

1. National Institute of Education, Nanyang Technological University, Singapore

Abstract

Short-term forecasting of performance in football is crucial in week-to-week decision making. The current study presented novel contributions regarding the considerations that should be accounted for in the prediction of match actions performed in competitive matches. First, the study examined whether the quantity and recency of training data used to build a prediction model significantly influenced predictive accuracy. Three prediction models were built with the exponential moving weighted average (EMWA) method, each differing in the quantity of training data used (three, five, and seven preceding match days). Next, the study examined if contextual constraints, such as type of match action being predicted, playing position, or player age, significantly influenced predictive accuracy. Match action data from players in the top five European leagues were collected from the 2014/2015 to the 2019/2020 seasons. The model trained using less but more recent data (three preceding match days) demonstrated the greatest accuracy. Next, within the offensive and defensive phases, match actions differed significantly in predictive accuracy. Lastly, significant differences were found in prediction accuracy between playing positions, whereby actions associated with the primary task of the playing position were more accurately predicted. These findings suggest that in the forecasting of individual match actions, practitioners should seek to train the prediction model using more recent data, instead of including as much data as possible. Furthermore, contextual constraints such as the type of action and playing position of the player must be keenly considered.

Publisher

SAGE Publications

Subject

Social Sciences (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3