Predictive Uncertainty Underlies Auditory Boundary Perception

Author:

Hansen Niels Chr.123ORCID,Kragness Haley E.456ORCID,Vuust Peter23,Trainor Laurel47,Pearce Marcus T.238

Affiliation:

1. Aarhus Institute of Advanced Studies, Aarhus University

2. Center for Music in the Brain, Aarhus University

3. Royal Academy of Music, Aarhus/Aalborg, Denmark

4. Department of Psychology, Neuroscience & Behaviour, McMaster University

5. Department of Psychology, University of Toronto Mississauga

6. Department of Psychology, University of Toronto Scarborough

7. McMaster Institute for Music and the Mind, McMaster University

8. School of Electronic Engineering and Computer Science, Queen Mary University of London

Abstract

Anticipating the future is essential for efficient perception and action planning. Yet the role of anticipation in event segmentation is understudied because empirical research has focused on retrospective cues such as surprise. We address this concern in the context of perception of musical-phrase boundaries. A computational model of cognitive sequence processing was used to control the information-dynamic properties of tone sequences. In an implicit, self-paced listening task ( N = 38), undergraduates dwelled longer on tones generating high entropy (i.e., high uncertainty) than on those generating low entropy (i.e., low uncertainty). Similarly, sequences that ended on tones generating high entropy were rated as sounding more complete ( N = 31 undergraduates). These entropy effects were independent of both the surprise (i.e., information content) and phrase position of target tones in the original musical stimuli. Our results indicate that events generating high entropy prospectively contribute to segmentation processes in auditory sequence perception, independently of the properties of the subsequent event.

Publisher

SAGE Publications

Subject

General Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3