Learning From Aggregated Opinion

Author:

Oktar Kerem1ORCID,Lombrozo Tania1,Griffiths Thomas L.12ORCID

Affiliation:

1. Department of Psychology, Princeton University

2. Department of Computer Science, Princeton University

Abstract

The capacity to leverage information from others’ opinions is a hallmark of human cognition. Consequently, past research has investigated how we learn from others’ testimony. Yet a distinct form of social information— aggregated opinion—increasingly guides our judgments and decisions. We investigated how people learn from such information by conducting three experiments with participants recruited online within the United States ( N = 886) comparing the predictions of three computational models: a Bayesian solution to this problem that can be implemented by a simple strategy for combining proportions with prior beliefs, and two alternatives from epistemology and economics. Across all studies, we found the strongest concordance between participants’ judgments and the predictions of the Bayesian model, though some participants’ judgments were better captured by alternative strategies. These findings lay the groundwork for future research and show that people draw systematic inferences from aggregated opinion, often in line with a Bayesian solution.

Funder

nomis stiftung

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3