Automated Study Challenges the Existence of a Foundational Statistical-Learning Ability in Newborn Chicks

Author:

Wood Samantha M. W.1ORCID,Johnson Scott P.2,Wood Justin N.1

Affiliation:

1. School of Informatics, Computing & Engineering, Indiana University

2. Department of Psychology, University of California, Los Angeles

Abstract

What mechanisms underlie learning in newborn brains? Recently, researchers reported that newborn chicks use unsupervised statistical learning to encode the transitional probabilities (TPs) of shapes in a sequence, suggesting that TP-based statistical learning can be present in newborn brains. Using a preregistered design, we attempted to reproduce this finding with an automated method that eliminated experimenter bias and allowed more than 250 times more data to be collected per chick. With precise measurements of each chick’s behavior, we were able to perform individual-level analyses and substantially reduce measurement error for the group-level analyses. We found no evidence that newborn chicks encode the TPs between sequentially presented shapes. None of the chicks showed evidence for this ability. Conversely, we obtained strong evidence that newborn chicks encode the shapes of individual objects, showing that this automated method can produce robust results. These findings challenge the claim that TP-based statistical learning is present in newborn brains.

Funder

Division of Behavioral and Cognitive Sciences

James S. McDonnell Foundation

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

SAGE Publications

Subject

General Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3