The Importance of Random Slopes in Mixed Models for Bayesian Hypothesis Testing

Author:

Oberauer Klaus1ORCID

Affiliation:

1. Department of Psychology, University of Zurich

Abstract

Mixed models are gaining popularity in psychology. For frequentist mixed models, previous research showed that excluding random slopes—differences between individuals in the direction and size of an effect—from a model when they are in the data can lead to a substantial increase in false-positive conclusions in null-hypothesis tests. Here, I demonstrated through five simulations that the same is true for Bayesian hypothesis testing with mixed models, which often yield Bayes factors reflecting very strong evidence for a mean effect on the population level even if there was no such effect. Including random slopes in the model largely eliminates the risk of strong false positives but reduces the chance of obtaining strong evidence for true effects. I recommend starting analysis by testing the support for random slopes in the data and removing them from the models only if there is clear evidence against them.

Publisher

SAGE Publications

Subject

General Psychology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3