Navigable Space and Traversable Edges Differentially Influence Reorientation in Sighted and Blind Mice

Author:

Normandin Marc E.1,Garza Maria C.1ORCID,Ramos-Alvarez Manuel Miguel2,Julian Joshua B.3,Eresanara Tuoyo1,Punjaala Nishanth1,Vasquez Juan H.1,Lopez Matthew R.1,Muzzio Isabel A.1ORCID

Affiliation:

1. Department of Biology, The University of Texas at San Antonio

2. Department of Psychology, University of Jaen

3. Princeton Neuroscience Institute, Princeton University

Abstract

Reorientation enables navigators to regain their bearings after becoming lost. Disoriented individuals primarily reorient themselves using the geometry of a layout, even when other informative cues, such as landmarks, are present. Yet the specific strategies that animals use to determine geometry are unclear. Moreover, because vision allows subjects to rapidly form precise representations of objects and background, it is unknown whether it has a deterministic role in the use of geometry. In this study, we tested sighted and congenitally blind mice ( Ns = 8–11) in various settings in which global shape parameters were manipulated. Results indicated that the navigational affordances of the context—the traversable space—promote sampling of boundaries, which determines the effective use of geometric strategies in both sighted and blind mice. However, blind animals can also effectively reorient themselves using 3D edges by extensively patrolling the borders, even when the traversable space is not limited by these boundaries.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

General Psychology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3