Prediction of Repeated Self-Harm in Six Months: Comparison of Traditional Psychometrics With Random Forest Algorithm

Author:

Chen Shu-Chin12ORCID,Huang Hui-Chun34ORCID,Liu Shen-Ing5ORCID,Chen Sue-Huei1ORCID

Affiliation:

1. Department of Psychology, National Taiwan University, Taipei, Taiwan

2. Suicide Prevention Center, MacKay Memorial Hospital, Taipei, Taiwan

3. Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan

4. MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan

5. Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan

Abstract

Suicidal risk has been a significant mental health problem. However, the predictive ability for repeated self-harm (SH) has not improved over the past decades. This study thus aimed to explore a potential tool with theoretical accommodation and clinical application by employing traditional logistic regression (LR) and newly developed machine learning, random forest algorithm (RF). Starting with 89 items from six commonly used scales (i.e., proximal suicide risk factors) as preliminary predictors, both LR and RF resulted in a better solution with much fewer items in two phases of item selections and analyses, with prediction accuracy 88.6% and 79.8%, respectively. A combination with 12 selected items, named LR-12, well predicted repeated self-harm in 6-month follow-up with satisfactory performance (AUC = 0.84, 95% CI: 0.76–0.92; cut-off point by 1/2 with sensitivity 81.1% and specificity 74.0%). The psychometrically appealing LR-12 could be used as a screening scale for suicide risk assessment.

Funder

Ministry of Science and Technology

Publisher

SAGE Publications

Subject

Life-span and Life-course Studies,Critical Care and Intensive Care Medicine,Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3