Flower pollination-based optimal design of reinforced concrete beams with externally bonded of FRPS

Author:

Sundar N1ORCID,Raghunath PN2,Dhinakaran G1

Affiliation:

1. School of Civil Engineering, SASTRA University, Tamil Nadu, India

2. Department of Civil and Structural Engineering, Annamalai University, Tamil Nadu, India

Abstract

The optimal design of reinforced concrete beams (RCBs) and structures with an objective of improving the chosen performances is an important problem in the field of construction works. Recently, the concrete beams, structures, and walls are strengthened externally by bonding fiber-reinforced polymer strips (FRPS). Usually, FRPS are employed in rehabilitation of existing beams, bridges, and other structural elements. This article modifies the problem of designing new RCBs with appropriate selection of FRPS with a goal of exploiting the benefits of FRPS such as higher tensile strength, better corrosion resistance, higher stiffness-to-weight ratio, and longer life. It, firstly, proposes an artificial neural network-based mathematical model for assessing the performances of RCBs bonded with FRPS from the data obtained from 69 FRPS-glued RCBs and then develops an optimal design procedure employing flower pollination-based optimization, which is imitated from the pollination process of plants, for obtaining design parameters of FRPS-glued RCBs with a view of enhancing both the ultimate load and the deflection ductility. It presents optimal design parameters of five FRPS-glued RCBs and experimentally validates the performances.

Publisher

SAGE Publications

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3