Prediction of tool wear in CFRP drilling based on neural network with multicharacteristics and multisignal sources

Author:

Zhu Guoqiang1,Hu Shanshan1ORCID,Tang Hongqun2

Affiliation:

1. Department of Mechanical Manufacturing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, People’s Republic of China

2. Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, Nanning, Guangxi, People’s Republic of China

Abstract

Carbon fiber-reinforced polymer (CFRP) drilling is a typical process in the aircraft industry. Because the components of CFRP are different and uneven, it is difficult to extract tool wear characteristics from the machining signals, which are composed of the processing characteristics of various materials and the tool state characteristics. The aim of this work is to present a new comprehensive approach based on multicharacteristics and multisignal sources to predict the tool wear state during CFRP drilling through a combination of a backpropagation (BP) artificial neural network (ANN) model and an efficient automatic system depending on the sliding window algorithm. It was verified that the peak factor and Kurtosis coefficient of different signals and the energy value of the d5 layer of the thrust force signal and the d3 layer of the vibration signal after wavelet decomposition were related to tool wear. Among them, the energy value of the d3 layer of the vibration signal was selected as the wear indicator and was able to describe the state of the tool during the CFRP drilling process regardless of the drilling conditions and individual tool differences. A confirmatory drilling experiment using 6-mm-diameter polycrystalline diamond twist drilling under different processing parameters was conducted to verify the ANN model based on multicharacteristics and multisignal sources. A lower feed speed and a higher cutting speed were both highly correlated with the VB value of flank wear. Drill wear accelerated because of the occurrence of adhesive wear when the number of drilled holes reached around 90. The accuracy of the neural network model is 80–87% when using the value of only one characteristic but clearly increases based on multicharacteristics and multisignal sources in real time, indicating that the BP ANN model has higher accuracy in predicting the tool state in CFRP drilling through the sensor signal fusion method.

Funder

Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials

Publisher

SAGE Publications

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3