Experimental and numerical investigation of the flexural behavior of CFRP box girders

Author:

Ding Guoping12ORCID,Zhang Yixuan3,Zhu Yong3

Affiliation:

1. Institute of Advanced Material and Manufacturing Technology, Wuhan University of Technology, Wuhan, China

2. Hubei Key Laboratory of Digital Manufacturing, Wuhan University of Technology, Wuhan, China

3. School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan, China

Abstract

The advantages of carbon fiber-reinforced plastic (CFRP) box girders include good bending resistance, lightweight and high strength. Therefore, they are widely used in aerospace, rail transit, and other fields. When the CFRP box girder is subjected to bending load, the strength of the initial damage is usually used as the ultimate load. However, after the initial damage of the CFRP box girder, the load will be redistributed and structure still have a higher ultimate load. As the damage accumulates, it eventually leads to complete failure of the structure, which is a progressive damage. It turns out that the composite structure still has bending capacity after the initial damage, but the mechanical response at this stage has not been fully studied. To make full use of the ultimate bearing capacity of the CFRP box girder, this article adopts the theory of progressive damage of a composite material and programs the ABAQUS/Explicit user material subroutine (VUMAT) to analyze CFRP box girder progressive damage. This article also produces CFRP box girder specimens with five typical ply schemes and implements three-point bending tests to verify the bending strength of the CFRP box girder. In addition, this article designs strain measurement and ultrasonic scanning experiments to verify the difference between experiment and simulation. The final result shows that the progressive damage model established in this article is reliable, among the five typical ply schemes, when the 0° ply ratio is 60% and the ±45° ply ratio is 40%, the CFRP box girder has the greatest ultimate load carrying capacity.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3