Microstructure and corrosion resistance of Al3(Zr, Ti)/Al composite prepared by powder metallurgy

Author:

Xu Daobing12ORCID,Long Wei12,Zhou Xiaoping12

Affiliation:

1. Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, People’s Republic of China

2. School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, People’s Republic of China

Abstract

In the automotive and aviation fields, the complex use environment is critical to the performance requirements of materials, the corrosion resistance of materials severely limits the service life of materials, and improving the corrosion resistance of materials is of great significance in industrial production. In this article, in situ synthesis of powder metallurgy was used to prepare Al-Zr-Ti composites, and the effects of the addition of different amounts of Ti elements on the microstructure and corrosion resistance of Al-Zr-Ti composites were studied. The results show that Ti atoms form Al3(Zr, Ti) compounds by substituting Zr atoms in Al3Zr in composite materials to form substituted solid solutions to improve the properties of composite materials. With the addition of Ti, the corrosion resistance of the composites is improved compared with Al-Zr binary; when the Ti content is 10% (wt), the corrosion resistance of the composites reaches the best value, the corrosion potential is −0.67211 V, and the corrosion current is 1.4804 × 10−7 A cm−2.

Publisher

SAGE Publications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Grain Refinement by Ultrasonic Treatment (UT) in Al–Al3Zr Composite;Springer Proceedings in Materials;2024

2. Fabrication aspect and mechanical properties of aluminium metal matrix composites: A perspective;THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022);2023

3. Design of In Situ Metal Matrix Composites Produced by Powder Metallurgy—A Critical Review;Metals;2022-12-02

4. Critical Assessment of the Al-Ti-Zr System;Journal of Phase Equilibria and Diffusion;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3