Knowledge technologies based on fabrication process composite materials and remote sensing applications

Author:

Mustafa Faten A12ORCID,Bayat Oguz1

Affiliation:

1. Department of Electrical and Computer Engineering, Altinbas University, Istanbul, Turkey

2. Remote Sensing Center, Mosul University, Mosul, Iraq

Abstract

The aim of this work concentrates on utilizing powerful MATLAB programming (software version R2016a) to evaluate the impact of environmental variations of water case in the Mosul Dam reservoir and observed its receding impact on human life activities based on composite image processing applications. Furthermore, composite materials of different temporal remote sensing data increase powerfully the estimation of environmental variables of relevance to human health. Thus, temporal remote sensing data trends to enhance the efficiency of detecting receding water resources effect of human life impacts over different years. Two steps were implemented, which focuses on the estimation of changes in the water surface of the lake over 31 years. Preprocessing step concentrates on composite data materials from different Landsats to be more suitable for next step by utilizing color composite image processing and postprocessing step implemented the coastline detection of the reservoir and recognition of the quality of clear water in the lake due to the variation of water spectral reflectivity by hybrid classification method. The performance of this study is based on statistics measurements on the surface area of water level and overall accuracy, which indicated that hybrid classification method improves the capacity of integrating two classification methods, which gained highly identification water lake classes regarding its quality and more. The obtained results achieved the desired purpose of this study to investigate the high power application through implementing composite different image processing techniques with temporal satellite data to conversance the amount of water level changes in Mosul Dam reservoir and its impact on storage quantity over years.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3