Online visual monitoring and ultrasonic feedback detection in the ultrasonic precision bonding of polymers

Author:

Sun Yibo12ORCID,Feng Yuqi3,Hu Pengfei1,Zhao Xing1,Yang Xinhua1,Wu Guoxiong2

Affiliation:

1. College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian, China

2. Suzhou Dongling Vibration Test Instrument Co., Ltd., Suzhou, China

3. China Ship Development and Design Center, Wuhan, China

Abstract

Ultrasonic bonding is a convenient bonding technology, which features sufficient cleanliness, high efficiency, no need for additional bonding aids, and other outstanding advantages. In recent years, it has been introduced into the field of the micro–nano assembly of polymer micro–nano devices, but it is still difficult for current ultrasonic bonding technology to meet the accuracy requirements of the micro–nano assembly. To improve the control accuracy of the hot-melt interface in the process of ultrasonic bonding, an online hot-melt interface monitoring method and an online ultrasonic transmission efficiency detection method are proposed in this article. With these detection methods, the real-time monitoring of the hot-melt interface can be realized on the basis of machine vision, while high-frequency dynamic force sensors can be used to detect the ultrasonic vibration transmitted from the ultrasonic horn to the anvil. Based on these methods, a functional anvil based on visual monitoring and ultrasonic detection is developed, the finite element method has been used to analyze the transmission characteristics of ultrasonic vibration, and experiments are carried out regarding online detection in the process of ultrasonic bonding. The results show that this system can realize the online detection of the hot-melt interface and ultrasonic transmission information, providing a new control method for ultrasonic bonding technology.

Funder

Basic scientific research project of Liaoning Provincial Department of Education

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3