Significance of tungsten disulfide on the mechanical and machining characteristics of phosphor bronze metal matrix composite

Author:

Sangaravadivel P1,Rajamurugan G2ORCID,Krishnasamy Prabu2

Affiliation:

1. Department of Mechanical Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India

2. School of Mechanical Engineering, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, India

Abstract

The phosphor bronze (PB) is widely preferred in various engineering applications due to its high strength, toughness, fine grain size, low coefficient of friction, and better corrosion resistance. The present work is to investigate the effect of tungsten disulfide (WS2) solid lubricant particle reinforcement in the phosphor bronze metal matrix composite (PBMC) through the mechanical and machining characteristics. The different variant of the composite is fabricated using stir casting technique by varying the volume percentage of WS2 particle from 0% to10%. The prepared PBMC samples are subjected to mechanical and machining (boring and high-speed turning) characterizations. The hardness (Brinell hardness) and flexural strength of the composites are examined as per the ASTM standard. The surface roughness (Ra) of the PBMC sample is analyzed through the boring and high-speed turning operations by varying the spindle speed, feed rate, and depth of cut. The scanning electron microscope (SEM) is employed to confirm the uniform dispersion of the reinforcement particle through the microstructural analysis. The presence of WS2 particles and other ingredients is ensured by X-ray diffraction analysis in the composites. The influence of WS2 reinforcement particles on tool life is analyzed on the PBMC4 (PBMC with 8% WS2) with the predefined machining parameters in the high-speed turning operation. The increase in WS2 particle (0–10%) improves the hardness (11.85%) and flexural strength in PBMC4 as compared to PBMC1 (PBMC with 0% WS2). At a higher spindle speed (1200 r/min), the Ra is reduced in PBMC1 as compared to 900 r/min, whereas the rest of the PBMC sample show higher surface irregularity at 1200 r/min.

Publisher

SAGE Publications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3