CFD investigation of sub-cooled boiling flow using a mechanistic wall heat partitioning approach with Wet-Steam properties

Author:

Promtong M1,Cheung SCP1,Yeoh GH2,Vahaji S1,Tu J1

Affiliation:

1. School of Engineering, RMIT University, Melbourne, Victoria, Australia

2. School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, North South Wales, Australia

Abstract

In this paper, the mechanistic wall heat partitioning approach was used to capture the complex heat and mass transfer in sub-cooled boiling flows. In order to accommodate the changes of local variables to be relevant to the physical properties of sub-cooled fluids, the Wet-Steam (IAPWS-IF97) is used as the working fluid. Currently, the approach is evaluated based on the bubble sliding along the wall before lifting-off, which is usually found in the flow boiling situations. In the simulation, the closure mechanistic models, including the fractal analysis, the force balance and the mechanistic frequency, were coupled with the Eulerian–Eulerian two-fluid framework, while the Shear Stress Transport model was used as a turbulent modelling closure. The Multiple Size Group model was introduced to handle the bubble interactions and predict the bubble size distribution. Moreover, the effect of adopting the sub-cooled liquid properties into the modelling was investigated and compared with the experiments over a wide range of flow conditions. Specifically, the predicted void fraction and the sub-cooling temperature near the heated wall were precisely compared with the cases of using the constant-property liquid. Overall, the satisfactory agreements were found between the experiments and the predictions of the liquid temperature, void fraction, interfacial area concentration, Sauter mean diameter and bubble and liquid velocities with the exception of the case of high heat and mass fluxes. To enhance the current prediction accuracy for a situation of having a high superheating temperature, more bubble interactions on the boiling wall, such as merging of the bubbles while sliding, need to be considered. Furthermore, to assess the model capability, this mechanistic approach will be introduced to elucidate the sub-cooled boiling flow in situations of using different fluids in the near future.

Funder

Australian Research Council

Publisher

SAGE Publications

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3