Molecular Targets for Human Papillomaviruses: Prospects for Antiviral Therapy

Author:

Phelps WC1,Barnes JA1,Lobe DC1

Affiliation:

1. Department of Virology, Glaxo Wellcome Inc, Five Moore Drive, PO Box 13398, Research Triangle Park, North Carolina 27709-3398, USA

Abstract

A substantial medical need exists for the development of antiviral medicines for the treatment of diseases associated with infection by human papillomaviruses (HPVs). HPVs are associated with various benign and malignant lesions including benign genital condyloma, common skin warts, laryngeal papillomas and anogenital cancer. Since treatment options are limited and typically not very satisfactory, the development of safe and effective antiviral drugs for HPV could have substantial clinical impact. In the last few years, exciting advances have been made in our understanding of papillomavirus replication and the effects that the virus has on growth of the host cell. Although still somewhat rudimentary, techniques have been developed for limited virion production in vitro offering the promise of more rapid advances in the dissection and understanding of the virus life cycle. Of the 8–10 HPV gene products that are made during infection, only one encodes enzymatic activities, the E1 helicase. Successful antiviral therapies have traditionally targeted viral enzymes such as polymerases, kinases and proteases. In contrast, macromolecular interactions which mediate the functions of E6, E7 and E2 are thought to be more difficult targets for small molecule therapy.

Publisher

SAGE Publications

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3