Cellulose Acetate Phthalate (CAP): An ‘Inactive” Pharmaceutical Excipient with Antiviral Activity in the Mouse Model of Genital Herpesvirus Infection

Author:

Gyotoku T1,Aurelian L1,Neurath AR2

Affiliation:

1. Virology/Immunology Laboratories, Departments of Pharmacology and Experimental Therapeutics and Microbiology, The University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201, USA

2. The Lindsley F Kimball Research Institute of the New York Blood Center, 310 East 67th Street, New York, NY 10021, USA

Abstract

The spread of sexually transmitted infections caused by herpes simplex virus type 2 (HSV-2) has continued unabated. At least 20% of the United States population has been infected with HSV-2 and there is a high probability of further virus transmission by asymptomatic carriers. Given the absence of effective vaccines, this indicates the need to develop prophylactic measures such as topical microbicides that have antiviral activity. Recent studies indicate that cellulose acetate phthalate (CAP), an inactive pharmaceutical excipient commonly used in the production of enteric tablets and capsules, is a broad specificity microbicide against diverse sexually transmitted pathogens. When appropriately formulated in micronized form, it inactivates various viruses, including HSV-2, in vitro. Here we show that CAP inhibits HSV-2 infection in the mouse model of genital HSV-2 infection. Pretreatment with micronized CAP formulated in a glycerol-based cream with colloidal silicone dioxide significantly reduced the proportion of HSV-2-infected mice (10% virus shedding, 0–5% lesion development and 0% fatality for CAP as compared to 84% shedding, 63% lesion development and 63% fatality in saline-treated mice). These differences were significant ( P≤0.0002 by the test of equality of two proportions). Virus titres in the minority of mice that developed infection were similar to those in untreated mice. HSV-2 infection was not inhibited by treatment with CAP formulated with other inactive ingredients (for example povidone plus crosprovidone) instead of silicone dioxide, presumably reflecting CAP complexation/inactivation. These data suggest that properly formulated, CAP may be an efficacious agent for preventing vaginal transmission of genital herpesvirus infections.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3