The X-ray Crystal Structure of the Sulfonated Azo Dye Congo Red, a Non-Peptidic Inhibitor of HIV-1 Protease which also Binds to Reverse Transcriptase and Amyloid Proteins

Author:

Ojala W. H.1,Ojala C. R.2,Gleason W. B.1

Affiliation:

1. Biomedical Engineering Center and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA

2. Normandale Community College, Bloomington, MN 55431, USA

Abstract

Congo Red is a sulfonated azo dye and widely used biological stain that has recently been the focus of intense interest because it has been shown to bind to proteins involved in viral recognition and replication. Congo Red also finds wide use as a histological stain for amyloid proteins of the type found in neurodegenerative conditions such as Alzheimer's disease, transmissible spongiform encephalopathies in cattle and mink, and scrapie in sheep. Congo Red has been demonstrated to protect normal prion protein from being converted to the protease-resistant form, an important step in the pathology of the so-called ‘slow viral’ diseases. The range of biological molecules to which Congo Red binds makes it an important lead compound in drug development, for example in the development of new anti-HIV and anti-Alzheimer's therapeutic agents. In this report we present the first high-resolution structure of Congo Red: the low-temperature (173 K) X-ray crystal structure determination of its calcium salt. Two conformations of the molecule are found in the same crystal structure, one in which the central biphenyl group assumes a twisted (25°) conformation, and one in which the biphenyl group is planar and is located on a crystallo-graphic inversion centre. In both conformations the sulfonate groups are oriented anti with respect to the long molecular axis and assume eclipsed conformations with respect to the naphthalene rings. A comparison is made with a published structure [Turned, W.G., and Finch, J.T. (1992) J Mol Biol 227: 1205-1223] in which Congo Red is bound to porcine insulin, this complex serving as a model for amyloid binding. The results illustrate the conformational flexibility possessed by the biphenyl spacer, which allows the hydrophobic portion of the molecule to assume an optimum fit in the hydrophobic binding pockets of target proteins. A model is presented for the binding of Congo Red to the HIV protease in which the sulfonate groups interact with the side-chains of arginine residues. This proposed binding mode is consistent with the observed binding for other sulfonated aromatic inhibitors such as Evans Blue.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3