The wisdom of crowds versus the madness of mobs: An evolutionary model of bias, polarization, and other challenges to collective intelligence

Author:

Lo Andrew W1,Zhang Ruixun2ORCID

Affiliation:

1. MIT Laboratory for Financial Engineering, Cambridge, MA, USA; MIT Sloan School of Management, Cambridge, MA, USA; MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Santa Fe Institute, Santa Fe, NM, USA

2. School of Mathematical Sciences, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China; National Engineering Laboratory for Big Data Analysis and Applications, Peking University, Beijing, China

Abstract

Despite its success in financial markets and other domains, collective intelligence seems to fall short in many critical contexts, including infrequent but repeated financial crises, political polarization and deadlock, and various forms of bias and discrimination. We propose an evolutionary framework that provides fundamental insights into the role of heterogeneity and feedback loops in contributing to failures of collective intelligence. The framework is based on a binary choice model of behavior that affects fitness; hence, behavior is shaped by evolutionary dynamics and stochastic changes in environmental conditions. We derive collective intelligence as an emergent property of evolution in this framework, and also specify conditions under which it fails. We find that political polarization emerges in stochastic environments with reproductive risks that are correlated across individuals. Bias and discrimination emerge when individuals incorrectly attribute random adverse events to observable features that may have nothing to do with those events. In addition, path dependence and negative feedback in evolution may lead to even stronger biases and levels of discrimination, which are locally evolutionarily stable strategies. These results suggest potential policy interventions to prevent such failures by nudging the “madness of mobs” towards the “wisdom of crowds” through targeted shifts in the environment.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3