Modeling interconnected social and technical risks in open source software ecosystems

Author:

Schueller William12,Wachs Johannes134ORCID

Affiliation:

1. Complexity Science Hub Vienna, Vienna, Austria

2. Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Vienna, Austria

3. Institute of Data Analytics and Information Systems, Corvinus University of Budapest, Budapest, Hungary

4. HUN-REN Centre for Economic and Regional Studies, Budapest, Hungary

Abstract

Open source software ecosystems consist of thousands of interdependent libraries, which users can combine to great effect. Recent work has pointed out two kinds of risks in these systems: that technical problems like bugs and vulnerabilities can spread through dependency links, and that relatively few developers are responsible for maintaining even the most widely used libraries. However, a more holistic diagnosis of systemic risk in software ecosystem should consider how these social and technical sources of risk interact and amplify one another. Motivated by the observation that the same individuals maintain several libraries within dependency networks, we present a methodological framework to measure risk in software ecosystems as a function of both dependencies and developers. In our models, a library’s chance of failure increases as its developers leave and as its upstream dependencies fail. We apply our method to data from the Rust ecosystem, highlighting several systemically important libraries that are overlooked when only considering technical dependencies. We compare potential interventions, seeking better ways to deploy limited developer resources with a view to improving overall ecosystem health and software supply chain resilience.

Funder

European Research Executive Agency

Hungarian Scientific Research Fund

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress-testing road networks and access to medical care;Transportation Research Part A: Policy and Practice;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3