Dropout Prediction in MOOCs: Using Deep Learning for Personalized Intervention

Author:

Xing Wanli1,Du Dongping2

Affiliation:

1. Department of Educational Psychology & Leadership, Texas Tech University, TX, USA

2. Department of Industrial Engineering, Texas Tech University, Lubbock, TX, USA

Abstract

Massive open online courses (MOOCs) show great potential to transform traditional education through the Internet. However, the high attrition rates in MOOCs have often been cited as a scale-efficacy tradeoff. Traditional educational approaches are usually unable to identify such large-scale number of at-risk students in danger of dropping out in time to support effective intervention design. While building dropout prediction models using learning analytics are promising in informing intervention design for these at-risk students, results of the current prediction model construction methods do not enable personalized intervention for these students. In this study, we take an initial step to optimize the dropout prediction model performance toward intervention personalization for at-risk students in MOOCs. Specifically, based on a temporal prediction mechanism, this study proposes to use the deep learning algorithm to construct the dropout prediction model and further produce the predicted individual student dropout probability. By taking advantage of the power of deep learning, this approach not only constructs more accurate dropout prediction models compared with baseline algorithms but also comes up with an approach to personalize and prioritize intervention for at-risk students in MOOCs through using individual drop out probabilities. The findings from this study and implications are then discussed.

Publisher

SAGE Publications

Subject

Computer Science Applications,Education

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning analytics and personalization of learning: a review;Ensaio: Avaliação e Políticas Públicas em Educação;2024-03

2. Prediction of In-Class Performance Based on MFO-ATTENTION-LSTM;International Journal of Computational Intelligence Systems;2024-01-18

3. Machine learning approaches to identify lithium concentration in petroleum produced waters;Mineral Economics;2024-01-09

4. Quantification and prediction of engagement: Applied to personalized course recommendation to reduce dropout in MOOCs;Information Processing & Management;2024-01

5. A Dual-Mode Grade Prediction Architecture for Identifying At-Risk Students;IEEE Transactions on Learning Technologies;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3