Affiliation:
1. Sokoto State University, Sokoto, Nigeria
2. Usman Danfodiyo University Teaching Hospital, Sokoto, Nigeria
Abstract
The study investigates the potential of anxiety clusters in predicting programming performance in two distinct coding environments. Participants comprised 83 second-year programming students who were randomly assigned to either a block-based or a text-based group. Anxiety-induced behaviors were assessed using physiological measures (Apple Watch and Electrocardiogram machine), behavioral observation, and self-report. Utilizing the Hidden Markov Model and Optimal Matching algorithm, we found three representative clusters in each group. In the block-based group, clusters were designated as follows: “stay calm” (students allocating more of their time to a calm state), “stay hesitant” (students allocating more of their time to a hesitant state), and “to-calm” (those allocating minimal time to a hesitant and anxious state but displaying a pronounced propensity to transition to a calm state). In contrast, clusters in the text-based group were labeled as: “to-hesitant” (exhibiting a higher propensity to transition to a hesitant state), “stay hesitant” (allocating significant time to a hesitant state), and “stay anxious” (remaining persistently anxious in a majority of the coding time). Additionally, our results indicate that novice programmers are more likely to experience anxiety during text-based coding. We discussed the findings and highlighted the policy implications of the study.
Funder
Tertiary Education Trust Fund