A Flipped Systematic Debugging Approach to Enhance Elementary Students’ Program Debugging Performance and Optimize Cognitive Load

Author:

Gao Xuemin1ORCID,Hew Khe Foon1ORCID

Affiliation:

1. Faculty of Education, The University of Hong Kong, Hong Kong

Abstract

Reintroducing computer science (CS) education in K–12 schools to promote computational thinking (CT) has attracted significant attention among scholars and educators. Among the several essential components included in CS and CT education, program debugging is an indispensable skill. However, debugging teaching has often been overlooked in K–12 contexts, and relevant empirical studies are lacking in the literature. Moreover, novices generally have poor performance in domain knowledge and strategic knowledge concerning debugging. They also consistently experience a high cognitive burden in debugging learning. To address these gaps, we developed a flipped systematic debugging approach combined with a systematic debugging process (SDP) and the modeling method. A quasi-experimental study was conducted to explore the effectiveness of this flipped systematic debugging approach, in which 83 fifth-grade students attended the flipped debugging training lessons with the SDP–modeling method, and 75 fifth-grade students attended the unassisted flipped debugging training lessons without the SDP–modeling method. The results indicated that flipped debugging training using the SDP–modeling method improved students’ debugging skills. The results from the questionnaire showed that the proposed teaching approach increased the students’ investment in germane cognitive load by promoting schema construction. It also helped reduce students’ intrinsic and extraneous cognitive load in learning.

Publisher

SAGE Publications

Subject

Computer Science Applications,Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3