Modeling of submarine initial pipe-laying process and its real-time semi-physical virtual reality system

Author:

Xu Xiujun1ORCID,Wang Liquan1,Li Zhen1,Yao Shaoming2,Fang Xiaoming3

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China

2. AMRC and Boeing, The University of Sheffield, Sheffield, UK

3. Offshore Engineering Technology Center, Offshore Oil Engineering Co., Ltd, Tianjin, China

Abstract

The mathematical model of the initial pipeline and cable process is created with regard to the ocean current load and wave load; and the mathematical model is solved by the numerical quasi-Newton method to investigate the effects of the current and wave load on the shape and force of the pipeline and cable during the initial pipe-laying process. On this basis, semi-physical simulation system is built to visualize the initial pipe-laying process. The simulation results are compared with OFFPIPE’s results to verify the mathematical model. The current and wave load effects on the shape and tension of the pipeline and cable are analyzed. This real-time virtual reality system will help engineering project in risk management and prediction as well as staff training, which is of vital significance for minimizing the risk of the actual pipe laying and improving the efficiency of the pipe-laying work.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3