Affiliation:
1. Hebei University of Water Resources and Electric Engineering, China
2. Water Resources Automation and Informatization Application Technology Research and Development Center of Hebei Colleges, China
3. Hebei Technology Innovation Center of Phase Change Thermal Management of Data Center, Hebei University of Water Resources and Electric Engineering, China
Abstract
To realize efficient palletizing robot trajectory planning and ensure ultimate robot control system universality and extensibility, the B-spline trajectory planning algorithm is used to establish a palletizing robot control system and the system is tested and analyzed. Simultaneously, to improve trajectory planning speeds, R control trajectory planning is used. Through improved algorithm design, a trajectory interpolation algorithm is established. The robot control system is based on R-dominated multi-objective trajectory planning. System stack function testing and system accuracy testing are conducted in a production environment. During palletizing function testing, the system’s single-step code packet time is stable at approximately 5.8 s and the average evolutionary algebra for each layer ranges between 32.49 and 45.66, which can save trajectory planning time. During system accuracy testing, the palletizing robot system’s repeated positioning accuracy is tested. The repeated positioning accuracy error is currently 10−1 mm and is mainly caused by friction and the machining process. By studying the control system of a four-degrees-of-freedom (4-DOF) palletizing robot based on the trajectory planning algorithm, the design predictions and effects are realized, thus providing a reference for more efficient future palletizing robot design. Although the working process still has some shortcomings, the research has major practical significance.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献