Affiliation:
1. Key Laboratory of Shaanxi Province for Development and Application of New Transportation Energy, Chang’an University, Xi’an, P.R. China
2. School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
Abstract
In this paper, a systematic experimental and kinetic model investigation was conducted over Cu-SSZ-13 catalyst to study the DeNOx efficiency and N2O formation for selective catalytic reduction of NOx with NH3 (NH3-SCR). The kinetic model was developed for various reactions to take place in the NH3-SCR system, including NH3 adsorption/desorption, NH3 oxidation, NO oxidation, standard SCR, fast SCR, slow SCR and N2O formation reactions. In addition, the reaction of N2O formation from NH3 non-selective oxidation was taken into account. All the experiments were performed in a flow reactor with a feed stream near to the real application of diesel engine vehicles exhaust. The current model can satisfactorily predict the steady state conversion rate of various species at the reactor outlet and the effect of gas hourly space velocities and ammonia nitrogen ratio on N2O formation. The results show that the kinetic model can simulate the reaction process of the Cu-SSZ-13 catalyst well. This is significant for the optimization of NH3-SCR system for achieving the higher DeNOx efficiency and the lower N2O emission.
Funder
Key Research and Development Program of Shaanxi Province
Basic Scientific Research of Central Colleges, Chang’an University
Special Fund for Basic Scientific Research of Central Colleges, Chang’an University
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献