Affiliation:
1. MOE Key Laboratory of Disaster Forecast and Control in Engineering, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
Abstract
Solving ordinary thin plate bending problem in engineering, only a few analytical solutions with simple boundary shapes have been proposed. When using numerical methods (e.g. the variational method) to solve the problem, the trial functions can be found only it exhibits a simple boundary shape. The R-functions can be applied to solve the problem with complex boundary shapes. In the paper, the R-function theory is combined with the variational method to study the thin plate bending problem with the complex boundary shape. The paper employs the R-function theory to express the complex area as the implicit function, so it is easily to build the trial function of the complex shape thin plate, which satisfies with the complex boundary conditions. The variational principle and the R-function theory are introduced, and the variational equation of thin plate bending problem is derived. The feasibility and correctness of this method are verified by five numerical examples of rectangular, I-shaped, T-shaped, U-shaped, and L-shaped thin plates, and the results of this method are compared with that of other literatures and ANSYS finite element method (FEM). The results of the method show a good agreement with the calculation results of literatures and FEM.
Funder
the Science and Technology Scheme of Guangzhou City
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献