R-Function and variation method for bending problem of clamped thin plate with complex shape

Author:

Xia Fengfei1,Li Shanqing1ORCID

Affiliation:

1. MOE Key Laboratory of Disaster Forecast and Control in Engineering, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China

Abstract

Solving ordinary thin plate bending problem in engineering, only a few analytical solutions with simple boundary shapes have been proposed. When using numerical methods (e.g. the variational method) to solve the problem, the trial functions can be found only it exhibits a simple boundary shape. The R-functions can be applied to solve the problem with complex boundary shapes. In the paper, the R-function theory is combined with the variational method to study the thin plate bending problem with the complex boundary shape. The paper employs the R-function theory to express the complex area as the implicit function, so it is easily to build the trial function of the complex shape thin plate, which satisfies with the complex boundary conditions. The variational principle and the R-function theory are introduced, and the variational equation of thin plate bending problem is derived. The feasibility and correctness of this method are verified by five numerical examples of rectangular, I-shaped, T-shaped, U-shaped, and L-shaped thin plates, and the results of this method are compared with that of other literatures and ANSYS finite element method (FEM). The results of the method show a good agreement with the calculation results of literatures and FEM.

Funder

the Science and Technology Scheme of Guangzhou City

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3