A bio-inspired scheduling approach for machines and automated guided vehicles in flexible manufacturing system using hormone secretion principle

Author:

Gu Wenbin1ORCID,Li Yuxin1,Zheng Kun2,Yuan Minghai1

Affiliation:

1. Department of Mechanical and Electrical Engineering, Hohai University, Changzhou, China

2. School of Automotive & Rail Transit, Nanjing Institute of Technology, Nanjing, China

Abstract

The product quality and production efficiency of a flexible manufacturing system have improved effectively by introducing the computer management and the material transportation system. The flexible manufacturing system performance greatly depends on the performance of the material transportation system. As a mobile robot controlled by a central controller, an automated guided vehicle has a strong ability for material transportation. This article studies a dynamic scheduling problem in a shop floor, where machines and automated guided vehicles run at a specified speed and specifies a mathematical model for the dynamic scheduling problem with the goal of makespan minimization. Meanwhile, inspired by the hormone secretion principle of the endocrine system, a bio-inspired scheduling optimization approach is developed to solve the dynamic scheduling problem in the flexible manufacturing system. To verify its practical application, the bio-inspired scheduling optimization approach and other scheduling approaches are tested, and the results illustrate that the bio-inspired scheduling optimization approach has better scheduling performance as well as optimizes the quality of integrated and real-time scheduling of machines and automated guided vehicles.

Funder

National Natural Science Foundation of China

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3