Mathematical model of brush seals for gas turbine engines: A nonlinear analytical solution

Author:

Changizi Amin1ORCID,Stiharu Ion2,Outirba Bilal3,Hendrick Patrick3

Affiliation:

1. Intelliquip LLC, Bethlehem, PA, USA

2. Concordia University, Montreal, QC, Canada

3. Université Libre De Bruxelles, Bruxelles, Belgium

Abstract

Presented herein is a mathematical model employing differential equations formulation for brush seals used in gas turbine engines. These components are used to seal the bearing chamber from the environment and reduce the loss of lubricant in the atmosphere, ensuring a MTBR long enough to have required the change the seals only during the engine overhaul operation. The model assumes a single curved bristle loop in the form of a curved-bridge beam subjected to the influences of complex external loads (static and dynamic). Further, a model for clustered bristles is proposed. Specifically, the static forces acting on the curved-bridge beam include the weight of the oil capillary attached to the beam, the weight of the beam itself, the capillary force developed between the surfaces of the bristles in the brush and the temperature gradient. The dynamic forces include the leakage oil pressure and the rotation of the shaft. This complex loading induces a nonlinear large deflection on the curved-bridge beam. Also, the temperature gradient present on the bristles during the gas turbine engine operation generates a change in the geometry of the beam and in the magnitude of the forces acting on the bristles modeled as beams. In the present model, the weights are assumed as uniformly distributed forces on the surface of the beam while the capillary forces and the force generated by the rotating shaft are considered to be non-uniform. The equation expressing the curvature of the beam under general loading force is developed and one can choose the appropriate method of solving the generated differential equation after the expression of the general force is defined. Hence, the ordinary differential equation describing the nonlinear large deflection of the curved-bridge beam will be derived using general nonlinear elasticity theory.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3