Performance evaluation of Al2O3 nanofluid as an enhanced heat transfer fluid

Author:

Kong Minsuk1ORCID,Lee Seungro2

Affiliation:

1. Department of Building Equipment System & Fire Protection Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea

2. Department of Mechanical Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea

Abstract

Thermal performance of Al2O3 nanoparticles dispersed in water was evaluated experimentally in a fully instrumented circular tube under turbulent flow conditions. Thermophysical properties of Al2O3 nanofluids at three different volumetric concentrations (0.38%, 0.81%, and 1.30%) were determined as a function of temperature. Pressure drop and heat transfer experiments were carried out at different volumetric concentrations and inlet fluid temperatures (10°C–30°C). The overall performance of the Al2O3 nanofluids was evaluated by considering both their hydraulic and heat transfer characteristics. The experimental results showed that the use of Al2O3 nanofluids increases the pressure drop by up to about 13% due to the greater viscosity. In addition, the heat transfer coefficient of nanofluids increased with the volumetric concentration by up to approximately 19% induced by the enhanced thermal conductivity. Furthermore, the experimental results indicated that the nanofluid with a volume fraction of 0.81% at the highest inlet fluid temperature increases the overall performance by up to around 8% and performs better than the other volume fractions. Enhancement in the overall performance increases with increasing inlet fluid temperature because of both the enhanced effective thermal conductivity and the decreased viscosity, which increases the energy exchange and decreases the pressure loss, respectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3