An integrated scheme of speed control and vibration suppression for spiral spring energy storage system driven by PMSM based on backstepping control with minimum electrical loss

Author:

Yu Yang12ORCID,Tian Xia1,Jia Yulong1,Cong Leyao1,Mi Zengqiang3,Fan Zhen2

Affiliation:

1. Hebei Key Laboratory of Distributed Energy Storage and Micro-Grid, North China Electric Power University, Baoding, China

2. Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA

3. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding, China

Abstract

The operational performance of the spiral spring energy storage system is affected by the vibration of the spiral spring and the electrical loss of the permanent magnet synchronous motor. It is important to eliminate vibration and reduce electrical loss. A unified control scenario for speed regulation and vibration suppression based on the minimum electrical loss is proposed. First, the spiral spring is equivalent to an Euler–Bernoulli beam and its dynamic model suitable for control is established via the Lagrange equation. Then, the unified control scenario is proposed through nonlinear backstepping control. The speed controller and current controller including modal vibration suppression and minimum electrical loss operation of the system are established, and the stability of the controller is theoretically proved. Moreover, for unknown vibration mode of the spiral spring, a vibration mode–based estimation method with the least-squares algorithm is designed. Aiming at the uncertainty of the permanent magnet synchronous motor’s iron loss resistance, an estimation algorithm based on an adaptive neural fuzzy inference system is designed. The experimental results verify the correctness and effectiveness of the proposed control scheme. In comparison with traditional backstepping control, the proposed control method can effectively suppress the vibration of the spiral spring and realize the stable and highly efficient energy storage operation of the system.

Funder

Headquarter of Science and Technology Project for Sate Grid Corporation of China

north china electrical power university

natural science foundation of hebei province

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3