Image correction for cone-beam computed tomography simulator using neural network corrector

Author:

Chen Chin-Sheng1,Hsu Cheng-Yi1,Chen Shih-Kang1,Lin Chih-Jer1,Hsieh Ching-Hao2,Liu Yi-Hung3

Affiliation:

1. Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan

2. Swissray Asia Healthcare Co., Ltd, Taipei, Taiwan

3. Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan

Abstract

In this article, a neural network corrector is proposed to correct the image shift, yielding the degradation of three-dimensional image reconstruction, for each slice captured by cone-beam computed tomography simulator. There are 3 degrees of freedom in tube module of simulator; the central point of tube module should be aligned with the central point of detector module to guarantee the accurate image projection. However, the mechanism manufacturing and assembling tolerance will let the above aim cannot be met. Here, a standard kit is made to measure the image shift by 1° step from −10° to 10°. The measure data will be the input training data of proposed neural network corrector, and the corrected translation position will be the output of neural network corrector. The Levenberg–Marquardt learning algorithm adjusts the connected weights and biases of the neural network using a supervised gradient descent method, such that the defined error function can be minimized. To avoid the problem of overfitting and improve the generalized ability of the neural network, Bayesian regularization is added to the Levenberg–Marquardt learning algorithm. After the training of neural network corrector, the different target position commands are fed into the neural network corrector. Then, the corrected data from neural network corrector are fed to be the new position command to verify the image correction performance. Moreover, a phantom kit is made to check the corrected performance of the neural network corrector. Finally, the experimental results verify that the image shift can be reduced by the neural network corrector.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3