Experimental study of drilling white Calacatta–Carrara marble using artificial neural approach

Author:

Abbassi Amira1ORCID,Akrichi Sofien1,Ben Yahia Noureddine1

Affiliation:

1. Laboratory of Mechanics and Energetic Systems, ENSIT, University of Tunis, Tunisia

Abstract

Highly accurate marble processing is increasingly needed to comply with tight parametric/geometric tolerances and surface integrity specifications encountered while structuring, sculpture, and decorating. In this study, a new approach based on the artificial neural network technique is evaluated for the prediction of process parameters in the machining of white Calacatta–Carrara marble. The rotation speed, feed speed, drill bit diameter, drill bit height, number of pecking cycles, and drilling depth were considered as input factors. Corresponding surface roughness, hole circularity, hole cylindricity, and hole-location error were sought in output. A series of experiments was carried out using a 5-axes computer numerical control vertical machining center (OMAG) to obtain the data used for the training and testing of the artificial neural network with reasonable accuracy, under varying machining conditions. A MATLAB TM interface was developed to predict surface roughness and geometric defects (circularity, cylindricity, and localization). A 6 × 4 size multilayered neural network was developed. The number of iterations was 1000 and no smoothing factor was used. The drill quality (hole-location error, hole circularity, and hole cylindricity) and the surface roughness were modeled and evaluated individually. One hidden layer used for all models, with the number of neurons for all the responses being executed separately, was 12 while the number of neurons in the hidden layer, with all the responses executed together, was 14. In conclusion, from the obtained verified experimentally optimization results, the errors are all within acceptable ranges, which, again, confirm that the artificial neural network technique is an efficient and accurate method in predicting responses in drilling.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3