Fluid-structure interactions of internal pressure pipeline using the hierarchical finite element method

Author:

Hicham Fakiri1ORCID,Abdelhamid Hadjoui2,Nabil Mohammed O.3

Affiliation:

1. Laboratory IS2M, University of Tlemcen, Tlemcen, Algeria

2. IS2M Laboratory University of Tlemcen, Algeria

3. University of Tlemcen, Tlemcen, Algeria

Abstract

We study the influence of the fluid with the structure in vibration between fluid and structure of a cylinder of circular section granted by the phenomenon of the interaction fluid structure of a conditioned flow of laminar nature and incompressible in the form of the macrostructure. These two phenomena by the mechanical relations of stresses according to displacements, modelled by a cylinder. The analysis of the vibrations of cylinders filled with fluid is studied with limiting conditions of fluid and the solid with the coupling conditioned by its limits of action-reaction in forces. The problem of the cylindrical pipe is formulated by deriving the deformation and the kinetic energies of the vibrating cylinder with and its fluid to have different natural frequencies, we use the principle of Hamilton change the problem in the expression of the equation cylindrical differential which gives three displacement functions in a system of partial differential equations of the cylindrical coordinate of circular section which meet the limiting conditions imposed at both ends. Let us apply the Navier-Stocks equation in cylindrical coordinates, with the fluid continuity equation, for the solid equation of mechanical behaviour of stresses in terms of displacement by strain. To obtain the results of natural frequencies we use the Galerkin method for solid and for Galerkin-time fluid. Where the liquid influences the inner surface of the circular cylinder, depending on the condition of the coupling that the stresses of the solid are equal to the stresses fluid. The modelling is done by a computer language (MATLAB), the hierarchical finite element method is presented by a Legendre polynomial with double integral of Rodrigues, to arrive at the final formula of the mass-rigidity matrix, which dissects on three parts (fluid, coupling and structure). Based on a comparison with experimental results. We continue to study some geometrical and physical parameters which influence the natural frequencies, in a proportional or inversely proportional way.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3