A review of entropy generation in microchannels

Author:

Awad Mohamed M1

Affiliation:

1. Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt

Abstract

In this study, a critical review of thermodynamic optimum of microchannels based on entropy generation analysis is presented. Using entropy generation analysis as evaluation parameter of microchannels has been reported by many studies in the literature. In these studies, different working fluids such as nanofluids, air, water, engine oil, aniline, ethylene glycol, and non-Newtonian fluids have been used. For the case of nanofluids, “nanoparticles” has been used in various kinds such as Al2O3 and Cu, and “base fluid” has been used in various kinds such as water and ethylene glycol. Furthermore, studies on thermodynamic optimum of microchannels based on entropy generation analysis are summarized in a table. At the end, recommendations of future work for thermodynamic optimum of microchannels based on entropy generation analysis are given. As a result, this article can not only be used as the starting point for the researcher interested in entropy generation in microchannels, but it also includes recommendations for future studies on entropy generation in microchannels.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3